David Koleczek

MARID 000300 0x00 HORLD TIME 1-1 362

On Optimizing Interventions in Shared Autonomy

UMass Amherst CICS

Weihao Tan Siddhant Pradhan David Koleczek Yash Chandak (PhD) Nicholas Perello (PhD)

Microsoft

H M Sajjad Hossain Vivek Chettiar Vishal Rohra Nan Ma Aaslesha Rajaram Soundar Srinivasan

David Koleczek

Introduction

UMass CS 696DS

Primary Contributors (UMass)

- Weihao Tan (M.S.)
- Siddhant Pradhan (M.S.)
- Nicholas Perello (PhD candidate)

Advisors

- Yash Chandak (PhD candidate)
- H M Sajjad Hossain (Data Scientist, MAIDAP)

Microsoft's AI Development Acceleration Program (MAIDAP)

Vivek, Nan, Vishal, Soundar, Aaslesha

Feedback from Microsoft Research

Sam Devlin (Senior Researcher)

Intervention Aware Shared Autonomy

Weihao Tan^{*1} David Koleczek^{*12} Siddhant Pradhan^{*1} Nicholas Perello¹ Vivek Chettiar³ Nan Ma³ Aaslesha Rajaram³ Vishal Rohra³ Soundar Srinivasan³ H M Sajjad Hossain^{†3} Yash Chandak^{†1}

Abstract

Shared autonomy refers to approaches for enabling an autonomous agent to collaborate with a human with the aim of improving human performance. However, besides improving perforcollaboration has also shown promising advances in microsurgery (Kragic et al., 2005), brain-computer interfaces (Muelling et al., 2017; Shanechi et al., 2016; Kim et al., 2006), myoelectric devices (Pilarski et al., 2011), and in leisure applications (e.g., enabling people with disabilities to enjoy playing Xbox video games (Xbox, 2018)).

Outline

- Reinforcement Learning



- Our Method

- The Problem

- Evaluation

agent action, a*

- Next Steps & Challenges

The Problem

Motivation

Xbox Adaptive Controller

• Helps people with disabilities enjoy games

Copilot Feature

• Two users can share "one controller" by combining the input from two controllers

The Problem

Can we work towards a general *autonomous agent* that assists someone with special needs in playing a game without the need for a second person?

Shared Autonomy

A broader area of research about Human-AI collaboration

Human input is combined with semi-autonomous control to achieve a **common goal**.

- Al inference of human goals
- Learning efficiently from limited human data
- Brain-computer interfaces
- User experience
- And much more...

Optimizing Interventions in Shared Autonomy

Our focus is on games, but so many other applications

Shared Control

Optimizing Interventions in Shared Autonomy

Imagine an agent assisting you play *Super Mario Bros.*

- If you are an **expert**...
- If it is your **first time** playing...
- If you are only able to use a **subset of** available controls...

Optimizing Interventions in Shared Autonomy

Goal

- Maximize **performance** at the task
- Minimize perceived impact of the agent (maximize user satisfaction)

How do we quantify the **experience** of a human?

Subjective and no single, correct answer

Interventions

- Consider the discrete number of **interventions** made by the agent
- Intervention rate: interventions / time

11

Super Mario Bros.

Noisy

HORLD TIME

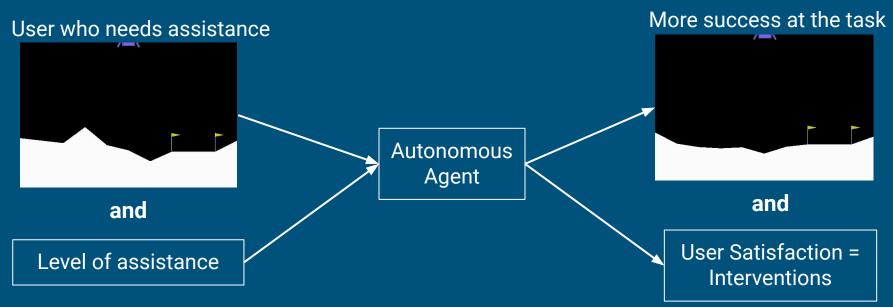
MARID 000000 #×00

Experimental Setup - Simulated Humans

/

OpenAl Gym: Lunar Lander

Problem Setup



Reinforcement Learning

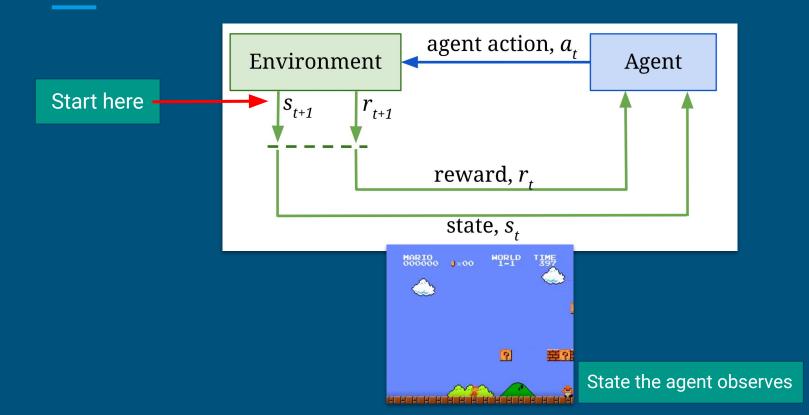
Intro to Reinforcement Learning

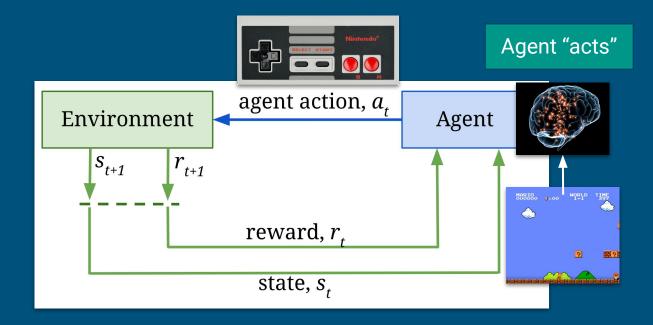
How do you go from **real world interactions**, like playing a game...

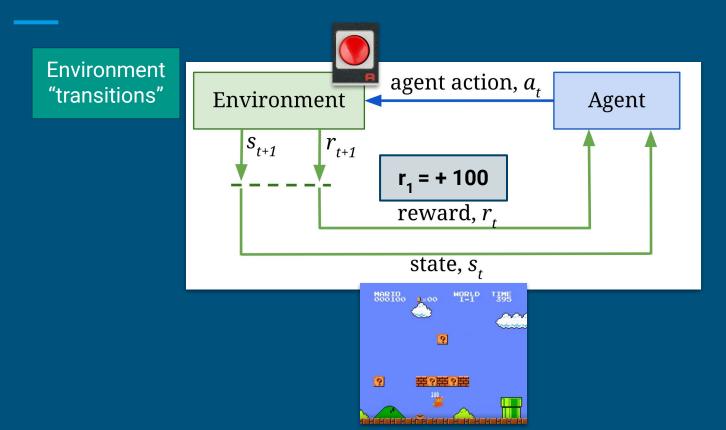
To a mathematically precise **decision making process** that you can optimize.

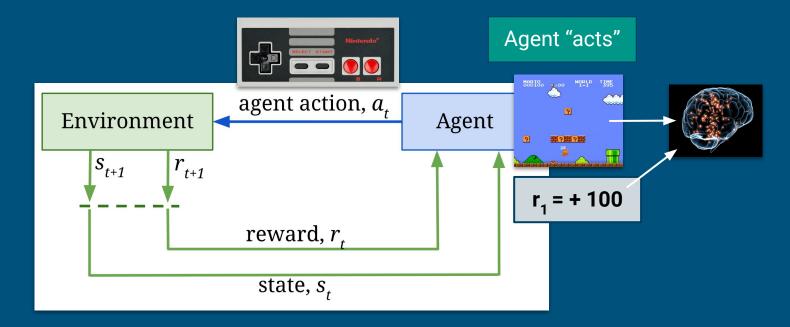
• How to build an automated system to play the game?

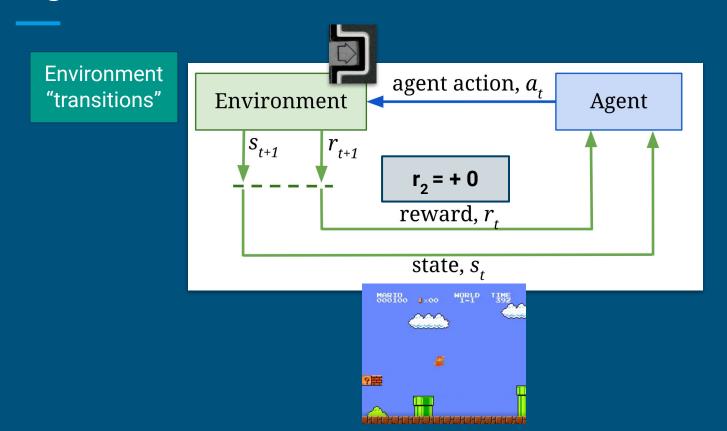
Reinforcement Learning!





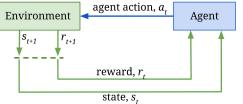


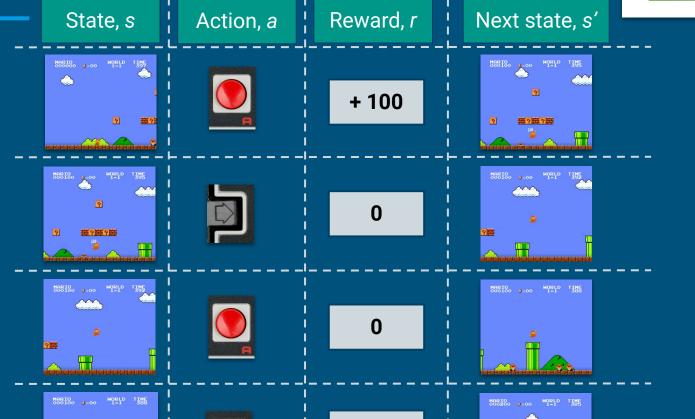




David Koleczek

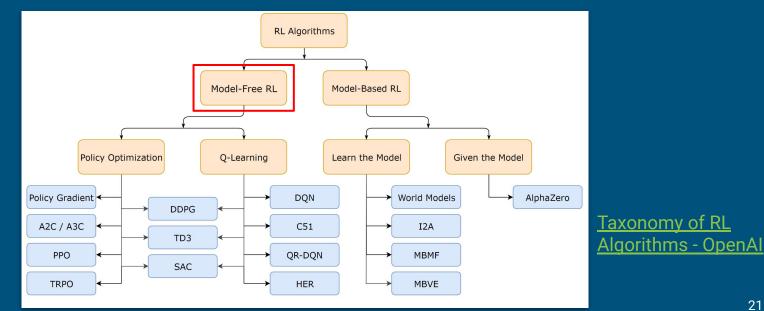
Dataset View of RL





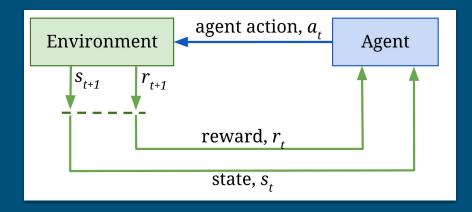
Learning Algorithms

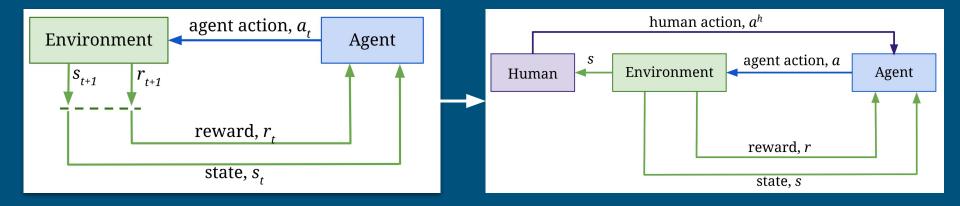
How to train an agent to take optimal actions?

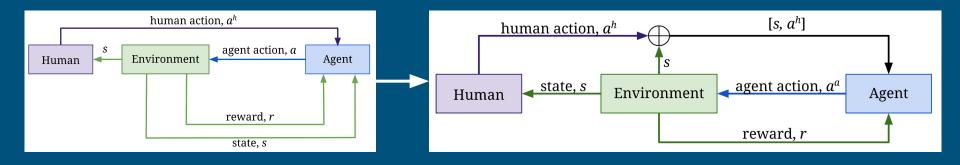


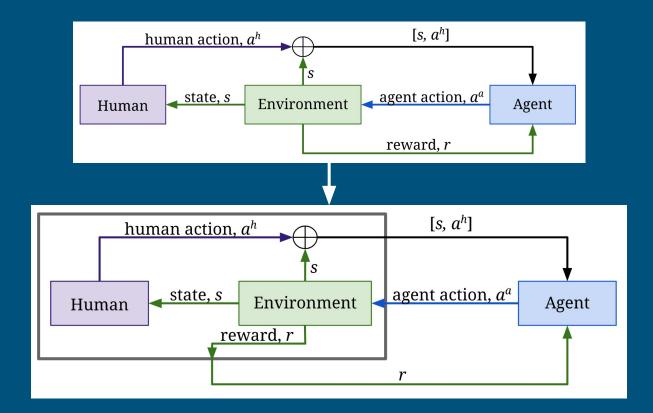
Our Method

Goal: Use RL to train the agent to **modify** human actions to **balance increasing reward** and **minimizing interventions** (a proxy for satisfaction)

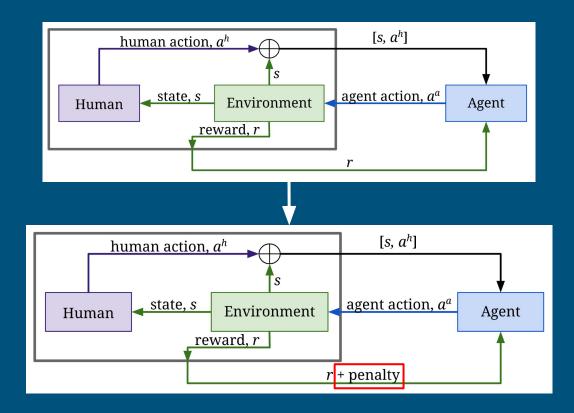








Soft Constrained Shared Autonomy



Soft Constrained Shared Autonomy - Penalty Adapting

How do you set the penalty?

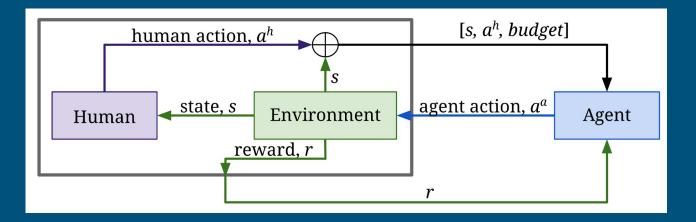
• Propose Penalty Adapting to tune penalty during learning

Our objective
$$\pi_a^* = \max_{\pi_a} \mathbb{E}_{\pi_a, \pi_h} \left[\sum_{t=0}^T r(s_t, a_t) \right]$$
 s.t. $\mathbb{E}_{\pi_a, \pi_h} \left[\sum_{t=0}^T I(a_t^a, a_t^h) \right] \le c$ Maximize total returnSatisfy a constraint on interventionsWritten as a Lagrangian $\max_{\pi_a} \min_{\lambda \ge 0} \mathbb{E}_{\pi_a, \pi_h} \left(\sum_{t=0}^T r(s_t, a_t) + \lambda \left(c - \sum_{t=0}^T I(a_t^a, a_t^h) \right) \right)$ Maximize using RLMinimize using gradient descent

Hard Constrained Shared Autonomy

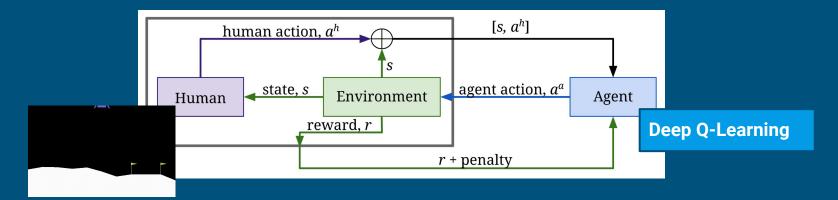
Set a *budget*; the maximum number of times an agent can intervene

- budget > 0, the agent can intervene whenever it desires
- budget = 0, the agent can no longer intervene

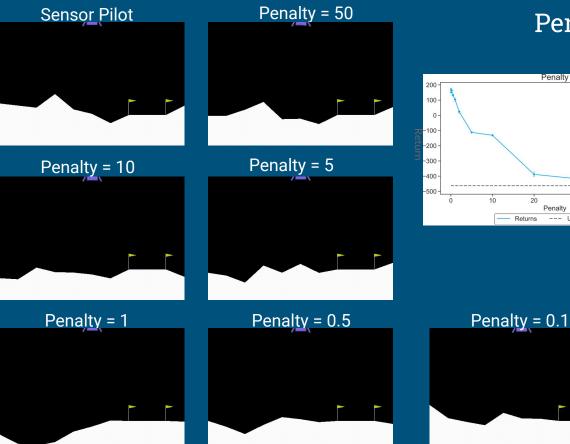


Evaluation

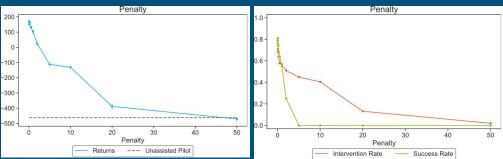
Experimental Setup



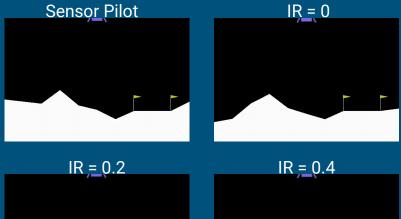
- 4 methods: Penalty, Penalty Adapting, Budget, Baseline*
- Use each of the 5 simulated humans
- Agents trained using Deep Q-Learning



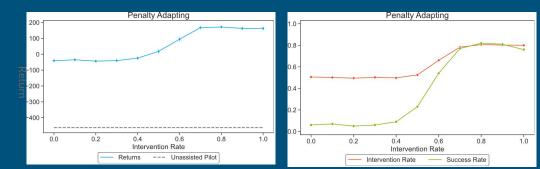
Penalty Method

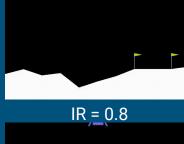


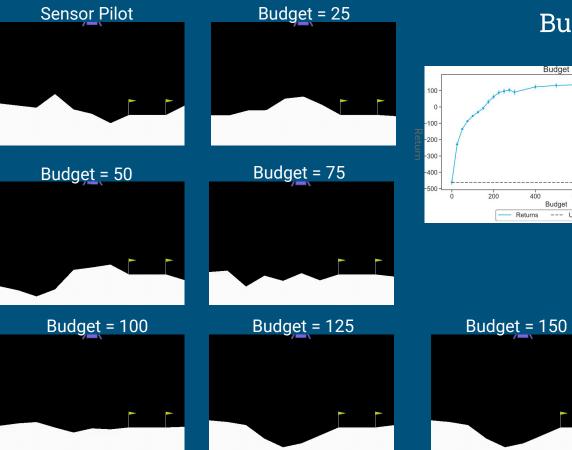
Penalty = 0.05



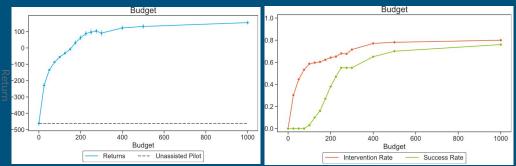
Penalty Adapting Method

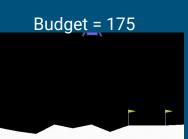






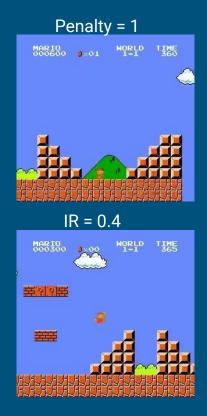
Budget Method

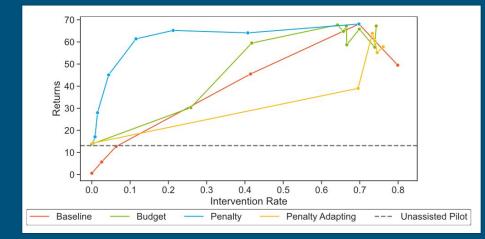




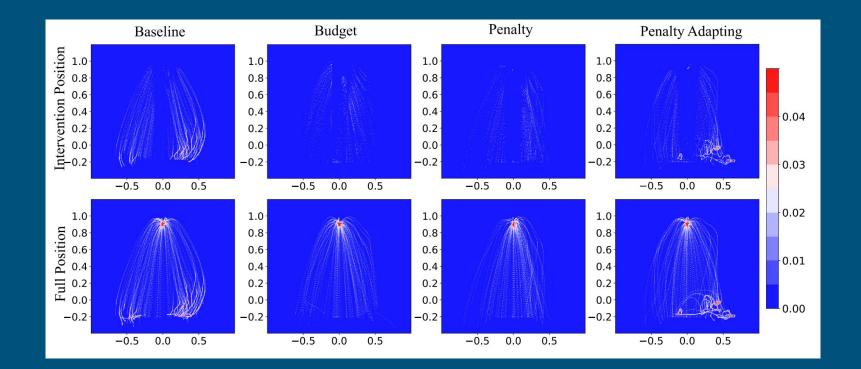
Super Mario

Noisy Pilot Budget = 300 MARIO 000300 0×00 1-1 362

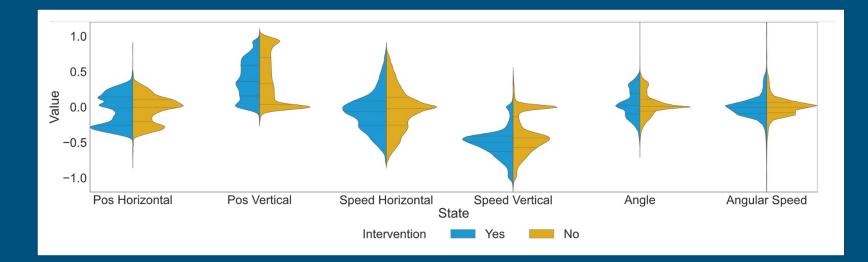




When Interventions Happen



When Interventions Happen



Distributions of each Lunar Lander state according to if an intervention happened, or not

• *Vertical position, vertical speed,* and *angle* show the agent is intervening more at states that are more likely to lead to imminent failure.

Demo

- Best way to know if the system is behaving as expected
- github.com/DavidKoleczek/hitl_demo

Red square means agent intervened

Next Steps & Challenges

Practical Application

What would it take to implement this in practice?

- 1. Access to a game environment
 - a. API for internal state representation or video "pixel" output
 - b. Programmatically take actions
- 2. Human data or simulated humans
 - a. Simulated humans that transfer well to the actual distribution
 - b. Dataset of $([s, a^h], a, r, s')$ tuples

Practical Application - Challenges

Open-ended games

- How do we know what a human wants to do?
- Do we have a reward function?
- What is the reward function telling us?

Practical Application

What would it take to implement this in practice? Can we train a RL agent to perform well on a complicated game in the first place?

- Large amount of compute
- Difficult to get working

Thanks! Any Questions?

AAAI 2022

• <u>Arxiv</u>

Human AI @ ICML, 2021.

- <u>pdf</u>
- <u>Poster</u>

Project: https://github.com/DavidKoleczek/human_marl

Demo: https://github.com/DavidKoleczek/hitl_demo