
Intro to Search Engines
A Survey on Web Search

David Koleczek

David Koleczek

Introduction
● Focus here on web search and a survey of techniques
● Many concepts broadly applicable beyond web search

○ Large scale data processing, learning to rank, data structures

● Based loosely on Search Engines and Information Retrieval: Applications for
Twitter

○ Which was inspired by UMass CS446 - Search Engines

● Search Engines Information Retrieval in Practice by Croft, Metzler, and
Strohman

http://davidkoleczek.me/SearchEngine/index.html
http://davidkoleczek.me/SearchEngine/index.html
https://ciir.cs.umass.edu/downloads/SEIRiP.pdf

Motivation

Information Retrieval: Not Just Web Search

Search is a Data Problem

Example of “raw” web pages

Interlude: How to find and store 30 trillion websites?

Web Crawling

Mostly a solved problem, see Apache Nutch or Scrapy’s web spiders

What are examples of
good seed websites?

https://cwiki.apache.org/confluence/display/NUTCH/NutchTutorial
https://docs.scrapy.org/en/latest/intro/tutorial.html

Interlude: How to find and store 30 trillion websites?
Crawling happens ALL the time

207.46.13.215 - - [28/Mar/2020:12:31:14 +0000] "GET / HTTP/1.1" 200 1120 "-"
"Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)"

66.249.68.30 - - [20/May/2020:14:39:11 +0000] "GET /robots.txt HTTP/1.1" 200 67 "-"
"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

66.249.68.30 - - [20/May/2020:14:55:22 +0000] "GET / HTTP/1.1" 200 1120 "-"
"Mozilla/5.0 (Linux; Android 6.0.1; Nexus 5X Build/MMB29P) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/80.0.3987.92 Mobile Safari/537.36 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

3.218.77.26 - - [31/Aug/2020:20:32:40 +0000] "GET /robots.txt HTTP/1.1" 200 67 "-"
"Mozilla/5.0 (compatible; ia_archiver/1.0; +http://www.alexa.com/help/webmasters; crawler@alexa.com)"

3.218.77.26 - - [31/Aug/2020:20:32:40 +0000] "GET / HTTP/1.1" 200 1116 "-"
"Mozilla/5.0 (compatible; ia_archiver/1.0; +http://www.alexa.com/help/webmasters; crawler@alexa.com)"

17.58.97.227 - - [31/Aug/2020:22:10:43 +0000] "GET / HTTP/1.1" 200 1116 "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/605.1.15 (KHTML, like Gecko)
Version/13.1.1 Safari/605.1.15 (Applebot/0.1; +http://www.apple.com/go/applebot)"

Sample weblog from a small web server

Interlude: How to find and store 30 trillion websites?
Google File System (later Google Colossus)
● Petabytes of web pages are stored across thousands of “cheap” servers
● Allow for constant scaling up to keep up with the growth of the web

Google Bigtable
● Built on top of the massive data stores
● Semi-structured storage system

○ Data is indexed in a bigtable using row and column names that can be arbitrary strings.
■ (row:string, column:string, time:int64) → string
■ row: URL of the website, column: “content” → HTML content of website

○ Data stored as uninterpreted strings, up to user to serialize their original data

● Adaptively spreads data across thousands of nodes

https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44877.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

Ranking
● How do we rank

websites given a
collection of websites
and a user query?

● Can be viewed as the
modeling part of a
search engine

? ? ?

?

?

● Estimates the relevance of a document with respect to a given search query

Retrieval Models - BM25

Statistics about the
collection of

documents and the
document

A user’s query

BM25 A score of relevance for a
document

Retrieval Models - BM25

● A summation over every term in the user’s query
● Operates document at a time (run this formula for each

document)

i := ith term in tokenized query Q

N := number of docs in the collection

n
i
 := number of docs containing term i

k
1
 := constant, hyperparameter

f
i
 := frequency of term i in the document

K := k
1
((1-b) + b(dl / avgdl))

b := constant, hyperparameter

dl := length of the document

avgdl := average length of a document in the

collection

k
2
 := constant, hyperparameter

qf
i
 := frequency of term i in the query

BM25: Inverse Document Frequency (idf)

i := ith term in tokenized query Q

N := number of docs in the collection

n
i
 := number of docs containing term i

● First term in the BM25 summation is known as the idf
component.

● Penalizes words in the query that occur in many
documents

● If the number of documents containing a term, ni, is 1
○ Will result in a very high value
○ However, if ni is close to N, then we will have a very low value.
○ log “dampens” the effect
○ 0.5 prevents division by 0

BM25: Term Frequency (tf)

k
1
 := constant, hyperparameter, [1.2, 2]

f
i
 := frequency of term i in the document

K := k
1
((1-b) + b(dl / avgdl))

b := constant, hyperparameter, 0.75

dl := length of the document

avgdl := average length of a document in

the collection

● If we disregard the constants that are fixed for every
document (k1, b, avgdl) , we are left with: fi / dl + fi

○ Ratio of how frequent a query term is compared to the length of
the document

○ Higher score the more frequent the term is in the document
○ Lower score the longer the document

● k1 is a scaling factor for the entire component
○ The higher it is set, the more impact this term will have

● b regulates the length normalization, dl / avgdl
○ b = 0 means it is ignored, b = 1 is full normalization

● avgdl serves to increase the score if the document is
shorter than average, and vice versa

BM25: Query Term Frequency (qtf)

k
2
 := constant, hyperparameter, [0, 1000]

qf
i
 := frequency of term i in the query

● Factors in how frequently terms appear in the query
● If k2 > 1, as qfi increases, its contribution to the score

will also increase.

Retrieval Models - BM25

● idf term penalizes words in the query that occur in many
documents

● tf gives high scores to terms that occur frequently within a
single document

● qtf gives higher scores to frequent query terms

Example Query: “Spotify Wikipedia”

i := ith term in tokenized query Q

N := number of docs in the collection

n
i
 := number of docs containing term i

k
1
 := constant, hyperparameter

f
i
 := frequency of term i in the document

K := k
1
((1-b) + b(dl / avgdl))

b := constant, hyperparameter

dl := length of the document

avgdl := average length of a document in the

collection

k
2
 := constant, hyperparameter

qf
i
 := frequency of term i in the query

idf tf qtf

Ranking Features
Many domain specific features can be derived to come up with a score of how
relevant a document is to a query.

BM25 - mostly term frequency of documents, length of documents, “bag of words”
statistics

PageRank - Measures importance of a webpage based on the number of links
that point to that website

Recency - newer websites should likely be higher

Ranking Features
Core question: How to combine these different features to get one score per
document?
General Process:
● Scale each feature, ex. each feature falls in the range [0,1]
● Take a weighted average

Interlude: Learning to Rank
Problem Formulation (Microsoft Learning to Rank Datasets)
● Each row is a query, url/document pair
● First column is the relevance label (0-4)
● Second column is the query id
● Remaining columns are feature:value

Use machine learning to create a ranking
● Learning to Rank: Class of algorithms that optimize for metrics like mean average

precision (MAP) or discounted cumulative gain (DCG)
○ As opposed to regression or classification metrics like MAE or cross-entropy

Many LTR implementations exist, including in LightGBM and XGBoost

Two rows from MSLR-WEB10K dataset

https://www.microsoft.com/en-us/research/project/mslr/
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Discounted_cumulative_gain

Text Processing

? ?

?

Text Processing
A Natural Language Processing (NLP) problem!
● For both documents and query understanding

Need to go from raw content of the document to features that work the best in our
ranking function.

Text Processing - Example
['josh', 'gordon', 'check', 'new', 'amp', 'improve', 'load', 'image', 'tutorial', 'thank',
'amy', 'jang', 'show', 'way', 'load', 'dataset', 'keras.preprocesse', 'write', 'input',
'pipeline', 'scratch', 'w/', 'tensorflow', 'dataset', 'load', 'image', 'tensorflow', 'core',
'august', ‘aug’, '16', '2020']

● Append username
● Stop words - remove most common words like “the”

○ “to be or not to be”?
● Remove punctuation and symbols
● Lemmatization - converting tokens to their lemmas based on

part of speech and potentially the context of the word
● Remove URLs and replace with the “resolved” website’s title

and description (depends on if the website provides this easily)
● Append the date

Text Processing
Handling the user query is as important as the data itself
● What did a user really mean?

Some basic techniques
● Spelling correction
● Replacing terms with synonyms
● Expansion by adding close matching words

Indexing

?

Indexing
Our ranking function needs to access a lot of statistics for potentially every
document. How do we do this efficiently?
● Structure our data such that we can access it in constant O(1) time!

Biggest Challenge
● Term frequency component of BM25 needs the freq of terms in documents
● How do we store counts of terms such that we don’t have to iterate over every

document for every query?
● Think about what data structure gives you lookups in constant time

Inverted Index
A hash map.
● term -> documents that term occurs in
● possibly further structure such as

frequency of term in that document

When evaluating BM25 for a
document/query pair
● Can directly lookup frequency of term in

a document

Indexing
What about storing other features?
● Similar idea - use hash maps! (see image)

Challenges at scale:
● Creating and updating this index takes a lot

of computation. By indexing, you shift the
computational burden away from query-time

● Might not fit all on one server
● Lots of work on compression

Putting it Together

Evaluation

Evaluation

Evaluation
Why did Google get it “right”? Data!

When a user searches “umass all” and doesn’t get what they were looking for, what is
the first thing they do?
● Immediately after search “umass autonomous learning lab”
● Search engines leverage this information to feed query expansion, spellcheck, etc

Bing’s user base is smaller and a lot of its users are people who use it by default on a
Windows PC.
● Likely very few Bing users ever searched for “umass all” and “umass autonomous

learning lab” right after

Evaluation
Difficult to determine what search results are relevant

Relevance is subjective and a lot of ambiguity

Conclusion
Gives an idea of how to be a better searcher!

Search Engines combine so many aspects of Computer Science
Even if you don’t ever build a search engine yourself…
● Use the large scale data processing or storage systems that evolved out of

building search engines
● Build models for ranking
● NLP
● Leverage data structures to implement efficient systems

