
David Koleczek

Intro to Reinforcement Learning
Inspired by UMass CS687

David Koleczek
December 18, 2020

https://people.cs.umass.edu/~pthomas/courses/CMPSCI_687_Fall2020.html

David Koleczek

What is Reinforcement Learning (RL)?
Reinforcement learning is an area of machine learning, inspired by behaviorist
psychology, concerned with how an agent can learn from interactions with an
environment.

–Wikipedia, Sutton and Barto (1998), Phillip Thomas

Figure: Agent-environment diagram.

Examples of agents include a child, dog,
robot, program
Examples of environments include the world,
lab, software environment

David Koleczek

What makes RL, RL?
Evaluative Feedback
● Rewards convey how “good” an agent’s actions are

○ Agent will try to maximize its total reward

● Agent is not told what to the best actions would have been

Where do we commonly tell an “agent” what it should have done (give instructive
feedback)?
● Supervised Learning!

○ Features can be thought of as state of the environment
○ Target is like the best action given those features.

David Koleczek

What makes RL, RL?
Sequential
● The entire sequence of actions must be optimized to maximize the total

reward the agent obtains.

What are the implications?
● Might require forgoing immediate rewards to obtain larger rewards later.

○ Stanford Marshmallow Experiment - would you take 1 cookie right now, or get 2 a month later?

● The way the agent selects actions changes the distribution of states it sees.
○ Means many RL problems are not provided as fixed datasets, but instead as code or

descriptions of the environment

● (Anecdote) Makes RL algorithms hard to parallelize

https://en.wikipedia.org/wiki/Stanford_marshmallow_experiment

David Koleczek

Example of an Agent-Environment
State: Position of the dog, coordinate like (2,1)
● The door is a special, terminal state (s∞)

Actions: Move up, down, left, or right

Environment Dynamics
● With probability 0.10 the dog gets distracted

and moves right regardless of the action
selected

Rewards
● Let’s think about some options...

0

David Koleczek

Example of an Agent-Environment
Rewards
● We want to place rewards such that the

dog will reach the door by taking the
sidewalk and not ruining our flowers!

● Question: With this Reinforcement
Learning setup, how would you assign
rewards for each state so that the dog
reaches the door?

0

David Koleczek

Example Solutions

0

0 0

0

0

1

-1 -1

-1 -1

0

-1 -1

-1

-1

0

-7 -8

-5 -6

00

David Koleczek

Takeaways on Rewards
Give rewards for what you want the agent to achieve, not for how you think the
agent should achieve it

Rewards that are given to help the agent quickly identify what behavior is optimal
is related to reward shaping.

Example blog post in robotics on how reward shaping can lead to undesired
behavior

Pessimistic blog post on why getting RL to work and choosing rewards is hard

https://medium.com/@BonsaiAI/deep-reinforcement-learning-models-tips-tricks-for-writing-reward-functions-a84fe525e8e0
https://www.alexirpan.com/2018/02/14/rl-hard.html

David Koleczek

Describing the Environment Formally
In order to reason about learning, we have to describe the environment and agent
using math.
Of many mathematical models that can be used to describe an environment,
Markov Decision Processes (MDPs) are the most common, simple, and flexible
● Capture a wide range of real and interesting problems

Specific definitions and notations vary, but usually share these common terms in a
tuple:
● (S, A, p, R, d0, γ)

David Koleczek

Describing the Environment Formally
MDP := (S, A, p, R, d0, γ)
S is the set of all possible states of the environment
● The state at timestep t is St

 and always takes values in S
● s∞

 is the terminal absorbing state, a special state once the agent is in it, it can
never leave and always gets a reward of 0

A is the set of all possible actions an agent can take
● The action at timestep t is At and always takes values in A

David Koleczek

Describing the Environment Formally
p is the transition function, describes how the state of the environment changes

For all s ∈ S, a ∈ A, s’ ∈ S, and t ∈ N≥0:
p(s, a, s’) := Pr(St+1 = s’ |St = s, At = a)

R describes how rewards are generated:

R(s, a) := E[Rt | St = s, At = a]

Note: In RL at least p is not known by the agent, and R is usually also not known
● If p and R are known, this is planning, where the agent does not need to

interact with its environment

https://en.wikipedia.org/wiki/Automated_planning_and_scheduling

David Koleczek

Describing the Environment Formally
d0 is the initial state distribution
● For all s, d0(s) = Pr(S0 = s)

γ ∈ [0, 1] is a parameter called the reward discount parameter

David Koleczek

Describing the Agent Formally
A policy is a way that an agent can select actions
For all s ∈ S, a ∈ A, and t ∈ N≥0:

π(s, a) := Pr(At = a | St = s)

An agent’s goal is to find the optimal policy, π*

David Koleczek

Describing the Agent Formally
Discounted Return → Objective function

● Notice that γ < 1 means that rewards received during later timesteps are worth
less to the agent.
○ Also ensures J(π) is bounded, in practice lower γ might result in faster

learning

An optimal policy is any policy that satisfies

David Koleczek

Concept Map

David Koleczek

Preview of RL Algorithms: Finding an Optimal Policy
Black-box optimization (BBO); not a class of algorithms specific to RL

Generic optimization algorithms that solve problems of the form:
● Called black-box because they treat f as a block-box,
● i.e. do not leverage any knowledge about its structure

Fun Fact: Active area of research even in RL, largely for hyperparam optimization (Bayes Opt)
● Nvidia's Solution for the BBO competition at NeurIPS 2020

One of the simplest possible BBO algorithms applied to RL: Hill-Climbing Search
● Start with some initial policy (ex. uniform random)
● Run that policy to get G, the discounted return
● while(true): Generate a new policy (?), get G again

○ if (G of new policy > G of old policy): keep new policy

Russell & Norvig (2009), pg 129

https://github.com/daxiongshu/rapids-ai-BBO-2nd-place-solution

David Koleczek

Preview of RL Algorithms
Action-value function or Q-function based methods

Algorithms: Sarsa, Q-Learning, Sarsa(λ), Q-Learning(λ)

Example Q-function: Each cell denotes expected
discounted return from state s taking action a
(values are not usually probabilities as shown here)

David Koleczek

Preview of RL Algorithms
Policy Gradient Methods
● Learn a parameterized policy that can select actions without consulting a

value function
● Maximize the policy parameter such that the updates approximate gradient

ascent on J:
●

Algorithms: REINFORCE, REINFORCE w/Baseline, Actor-Critics

David Koleczek

Learning from Data
Frequently in RL environments used in research and examples
● Provide any action and immediately get a new state and reward
● Can “query” environment infinitely often (games, robot simulations)

import gym
env = gym.make("CartPole-v1")
state = env.reset()
for _ in range(1000):
 action = my_action_selection() # your agent here
 state, reward, done, info = env.step(action)

 if done:
 state = env.reset()

env.close()

OpenAI Gym Example

https://gym.openai.com/envs/CartPole-v1
https://gym.openai.com/

David Koleczek

Learning from Data
That type of setup is unrealistic in a lot of cases…
● (Opinion) A hard part of RL is setting up your problem
● Designing rewards, determining possible actions, state representation

What if we do have a fixed dataset?
● Equate it as needing to go through a process similar to feature engineering
● Raw data → data that can be used (well) by an algorithm

David Koleczek

Learning from Data
Have output from some behavior policy
● Goal is to improve that policy

Episode 1

S0 A0 R0

S1 A1 R1

...

Episode 2

S0 A0 R0

S1 A1 R1

...

Episode ...

Episode 1

S0 A0 R0 S1

S1 A1 R1 S2

...

Episode 2

S0 A0 R0 S1

S1 A1 R1 S2

...

Episode ...

Monte Carlo and Policy Gradient algorithms like
REINFORCE

● Dataset on the left ends up being all you need

Off-policy algorithms like Q-Learning
● Also need the next state

○ Trivial to derive given the left dataset

On-policy algorithms like Sarsa
● Same data requirement as Q-Learning
● But assume you take actions according to the

policy you are learning, which isn’t the case
since we have data from an arbitrary policy

David Koleczek

Learning from Data
Common Case: All you have is data and a problem to solve!
Example: Automated trading in financial/cryptocurrency markets[Inspiration 1 and 2]

● Trading happens in a double auction with an open order book
● Buyers and sellers get matched so they can trade with each other on an exchange

Data:
● Trade history (for a single asset on an exchange)

○ Each trade has a timestamp, size, price, and direction (buy/sell)
● Order book

○ List of who is willing to buy or sell and at what price, alongside a volume
○ Asks (offers): People willing to sell
○ Bids: People willing to buy
○ Note: difference between the best ask and best bid is called the spread and

best ask > best bid or else a trade would have already happened

http://www.wildml.com/2018/02/introduction-to-learning-to-trade-with-reinforcement-learning/
https://dennybritz.com/blog/ai-trading
https://en.wikipedia.org/wiki/Double_auction
https://en.wikipedia.org/wiki/Order_book_(trading)

David Koleczek

Learning from Data
Our Goal: Create an agent that takes actions in the exchange to maximize profits

State: History of all exchange events (trades and order book) and current account
balance at the current timestep
● Unknown to me: Good ways to parameterize/encode the history into a vector

Actions: Issue a market order: buy or sell at the best price(s) possible right now
Reward: Realized PnL (Profit and Loss)
● Ex.) If buy order then: reward is the inverse of value purchased

Create a “dataset” of sequential states that you can apply an RL algorithm to, which will
give you a policy (mapping states to actions).
Agent will provide actions based on what RL algorithm you choose. Environment can
provide the rewards as you take actions.

David Koleczek

Alternative to Supervised Learning? Think twice...
We might be tempted to take a supervised learning problem and convert it into an
RL problem in order to apply sophisticated RL methods

Example for classification:
● State as the features
● Action as the label
● Reward is 1 if correct, -1 otherwise

Although possible and a valid use of RL, this will very likely give you bad results!

David Koleczek

RL or Supervised?
1.) Type 1 Diabetes treatment, where the goal is to determine how much insulin an

insulin pump should inject in order to keep a person’s blood glucose levels near
optimum levels. Data is current blood glucose + carbs.

2.) Digital marketing, where the goal is to present ads on a website that are likely to
be clicked by the user. Assume that we have some knowledge about the user, like
their age and gender.

3.) Determining the composition of rocks using spectroscopy. For this task the agent
observes spectra collected from a rock and makes a decision about what minerals
it believes are present. There are data sets containing examples of spectra of
rocks with known compositions, but these data sets are small.

David Koleczek

Conclusion
● Hopefully have some foundational

knowledge needed to figure out if RL
could a good solution to some problem

● Able to dig deeper into textbooks or
papers, lots I didn’t cover.

● RL is still new, but growing fast!
● Lots of room for new

discoveries/applications, or library
development (state of RL is libraries is
poor, unlike deep learning)

