
What’s Happening in AI!? Hierarchical Topic Analysis for Artificial Intelligence
Tweets

David Koleczek
University of Massachusetts Amherst

dkoleczek@umass.edu

Abstract

The goal of this project is to distill the breadth of knowl-
edge and news about AI, machine learning, and data sci-
ence that is shared on Twitter. In a previous project we took
one step towards this goal by classifying tweets based on
their relevance to AI and then creating a bot1 to retweet the
most relevant tweets. In this project we aim to create an
unsupervised system to discover high level topics, repeat to
discover sub-topics, and finally calculate their relative fre-
quency over time with respect to the other topics.

1. Introduction
Artificial intelligence, data science, and machine learn-

ing (from this point we will refer to these related fields as
AI) is a field that has become incredibly vast in the amount
of different subfields and practical problems it is being ap-
plied to. For a data scientist in industry or a researcher
in computer science, keeping up with the latest research,
trends, and applications can be a daunting task. While in
parallel social media like Twitter has made it easier than
ever to share information across institutions and disciplines;
it still faces several issues that make it difficult to use for this
task out of the box. It has a lack of focus in that content rec-
ommendations and discovery are not tailored to this task,
rather will provide recommendations to suit the goals of the
platform. It is rare that a user would only like to see AI con-
tent on their Twitter feed all of the time and would instead
prefer to purposefully seek this knowledge. Our goal with
this work is to leverage the information shared on social
media, namely via Twitter, and present it in a more focused
digest about AI.

In a previous project, we created a system that collects
tweets and scores them based on their relevance to AI . The
most relevant tweets were both retweeted by an account on
Twitter at a fixed schedule, and also displayed in a feed on
a web UI. This system was able to effectively separate rel-

1Found on Twitter dave co dev

evant tweets from the remaining noise that can be found on
social media. However, a drawback is that it finds all AI
content. While still substantially focusing content that can
be seen by a user, it still may be overwhelming to see 20-30
tweets a day ranging from theory to reinforcement learning
to natural language processing. It also makes it difficult to
understand a holistic picture of trends in the field. For ex-
ample, someone may currently be seeing many new tweets
about a new transformer model, but they would not know
this is a dominant paradigm in NLP if they did not consis-
tently check the filtered Twitter feed over time.

As a solution to these problems, we propose an unsu-
pervised method to discover topics within a corpus of AI
tweets. These discovered topics would be tracked over time
in order to provide a holistic picture of AI trends. Further-
more, the high level topics found will be decomposed into
subtopics using a similar unsupervised method. In this way,
our goal is to first discover topics such as “image recogni-
tion”, “reinforcement learning”, or “deep learning”. Then,
of the data that is classified as “reinforcement learning”,
for example, we will be able to further decompose it into
subtopics such as “environments” or “multi agent”. For
each hierarchy of discovered topics, we will chart the rel-
ative number of tweets associated with each topic over time
as a proxy for the importance of the topic. This is based
on the intuition that more important topics during a period
of time will have more associated tweets. Finally, at the
subtopic level we can view the associated tweets for some
particular time period. We envision a use-case in a system
where a user will select a high level topic they are interested
in, view the subtopics, and select a subtopic which will fi-
nally show the tweets associated with that subtopic between
some time period.

To solve this problem, we propose a topic modeling ap-
proach closely related to BERTopic [5]. We make several
key changes and additions to build an end-to-end system
for this task. We also provide a detailed analysis of the re-
sults and provide discussion on the practical utility of this
approach.

1

https://twitter.com/dave_co_dev

1.1. Data

The dataset is a collection of tweets from the home time-
line of an account that follows AI-related twitter accounts
(individuals in academia or industry, and organizations).
There are tweets from any account on Twitter, including
ones not followed by the account. Some of the most fre-
quent users are hardmaru, François Chollet, and Yann Le-
Cun. The core of the dataset is the full tweet text, its
language, the user name, creation date, and what type of
tweet it is (regular, retweet, reply, or quote). The tweets are
fetched directly from Twitter’s API every 10 minutes and
stored in a database. Some tweets contain URLs that pro-
vide important context. For each URL we have scraped the
website’s title and description text (this is what is usually
in Twitter’s preview) and the full HTML content. Addition-
ally, not every tweet in this dataset is relevant to AI. In a
previous project we created a classifier to predict if a tweet
is relevant. This model is trained using 9000 ground truth
binary labels we have manually assigned through a web
UI2 over the last few years. The model itself is fine-tuned
RoBERTa [11] which outputs a relevance score from 0 to
1. We found that tweets with scores > 0.8 can be consid-
ered relevant. A total of 27000 relevant tweets, mostly from
September 2019 through September 2021, will be used for
unsupervised learning.

2. Related Work

2.1. Latent Dirichlet Allocation

One of the most commonly used methods of topic mod-
eling is Latent Dirichlet Allocation (LDA) [2]. LDA is
a generative approach to topic modeling that assumes all
documents within a corpus belong to some predetermined
number of topics. This means that the optimal amount of
topics for the task must be known ahead of time and each
document must be assigned to one of the topics. It learns
probabilities to estimate the topic distribution for each doc-
ument based on the distributions of words within each topic
and document. Topics become the words that are the most
likely words for the associated topic cluster, and the topic
for a document is the one with the highest probability. In
LDA each document is treated as a bag of words without
regard for the semantics of the overall document. This re-
sults in the model being sensitive to the pre-processing of
the document (stop words are often filtered out and n-grams
are created).

2.2. Embed, Cluster, Extract

Recent work in topic modeling has taken a multi-step
approach instead of relying on an individual algorithm like

2Found at mlfeed.tech

Figure 1: Embed, Cluster, Extract paradigm we use for topic
modeling based on BERTopic [5].

LDA. [1] and [5] use a paradigm that we refer to as Embed,
Cluster, Extract.

Embed. Documents are first embedded using pre-
trained models such as doc2vec [9] or a sentence trans-
former [19]. Sentence transformers in particular are specif-
ically designed BERT-based [4] models for generating sen-
tence embeddings that are more effective for downstream
tasks such as topic modeling than directly using BERT’s
output layer or a vector representation model like GloVe
[15].

Cluster. Given a collection of embedded documents, the
next step is to cluster documents, where cluster member-
ship corresponds to a document’s topic. The embeddings
produced in the previous step by doc2vec generally have
a length of 100, while the embeddings produced by a sen-
tence transformer can be up to 768. This high dimension-
ality poses a problem for clustering algorithms. As such,
before clustering the data, it is reduced using an algorithm
such as UMAP [13]. Finally, an algorithm such as HDB-
SCAN [3] is used for creating clusters of documents.

Extract. Once documents are clustered, an interpretable
topic description is created. [1] uses the centroid of the clus-
ter and finds the closest word vectors. [5] treats all docu-

2

https://mlfeed.tech/

ments in a single topic as a single dataset and applies TF-
IDF which gives the importance scores for words within a
cluster.

Embed, Cluster, Extract is the paradigm our work is
based on and we will later provide a discussion about its
weaknesses in practice as this is a notable omission from
the aforementioned related works.

2.3. Autoencoders

Originally proposed in [8], [21] uses an autoencoder neu-
ral network model for topic modeling. The goal of an au-
toencoder is to reconstruct an input sequence from a com-
pressed representation within the model. Using such an ar-
chitecture, their autoencoder uses as input document em-
beddings. The input embeddings were originally GloVe, but
[21] used their novel sentence transformer Phrase-BERT.
They showed that the resulting topics are more coherent
than LDA via human evaluation experiments.

3. Approach
3.1. Baseline

We establish Latent Dirichlet allocation (LDA) [6, 2] as
our baseline method of topic modeling. Due to LDA being
very sensitive to the tokens contained within the documents
take a number of steps to clean the raw tweet data. Lever-
aging the NLP library spaCy [7], we first apply a number
of corpus independent transformations on each document.
The transformations are: lowercase each token, remove stop
words, remove punctuation, symbols, and URLs, lemmatize
tokens, and remove any tokens beginning with ’@’ (men-
tions on Twitter). Afterward we apply the following corpus
dependent transformations: adding the most common bi-
grams and trigrams to each document, remove tokens that
occur in less than 20 documents, and removing tokens that
occur in over 25% of documents. Using gensim [18] we
convert each document into a term-frequency inverse docu-
ment frequency (TF-IDF) [17], bag of words representation.
Finally, using these vectors we learn an LDA model.

3.2. Embed, Cluster, Extract

Using BERTopic [5] as a starting point, our primary
system for topic modeling uses the Embed, Cluster, Ex-
tract paradigm we previously described and an overview
is shown in Figure 1. In order to categorize tweets into
topics, we first need to create a vector representation that
represents the text of each tweet. Given an input tweet of
length N tokens, we compute a representation x. To com-
pute this representation, we use sentence transformers [19]
which use the standard BERT architecture [4] to create con-
textualized word embeddings for all input tokens. However,
since a fixed length output is desired, a mean-pooling oper-
ation is applied to BERT’s output. We use the pretrained

all-mpnet-base-v2 model based on MPNet [20] as it has the
best performance on the evaluated downstream tasks3 and
computational speed is not a concern. We individually em-
bed each tweet into a T x d embedding matrix E where T
is the number of tweets and d is the dimensionality of each
embedding.

Once we have E, we need to reduce the dimensionality
of these embeddings in order for them to be used effectively
in a downstream clustering algorithm. We use UMAP (Uni-
form Manifold Approximation and Projection) [13] for non-
linear dimension reduction4. UMAP has three key hyperpa-
rameters: the number of components, number of neighbors,
and a distance metric. The number of components deter-
mines the dimensionality of the reduction and we set it to
5. The number of neighbors balances local versus global
structure; we set it to 15 to achieve a balance. For com-
puting the distance between input vectors we choose cosine
distance as it is a common choice for computing the corre-
lation between text representations. After inputting E into
UMAP, we are left with a reduced matrix Er of size T x
dr where dr is the reduced dimensionality corresponding to
the number of components hyperparameter.

We then use HDBSCAN [12] to cluster the reduced em-
beddings. It is a density based method which allows it to
be more robust to noise and outliers. It does not force each
of the input points to be in a cluster, instead it can choose
to classify points into a noise cluster. There are three pa-
rameters that can significantly impact the resulting clusters;
minimum cluster size, minimum samples, and cluster se-
lection epsilon. Minimum cluster size determines the mini-
mum number of points that must be in a cluster. Minimum
samples intuitively provides a measure of how conservative
the clustering should be, with larger values leading to more
points classified as noise. Cluster selection epsilon is used
to merge clusters and is exactly the distance between clus-
ters that will be combined. For example, if this parameter is
set to 0.5, clusters within 0.5 units will not be separated. We
found that both minimum cluster size and minimum sam-
ples have significant impact on the resulting clusters and
are dataset dependent5. Cluster selection epsilon is useful
in reducing the size of clusters since HDBSCAN does not
have a number of cluster parameter, but there is a very fine
threshold between merging a few clusters and merging them
all into just two or three. The result of this step is a mapping
of each of the T tweets to a cluster c ∈ C.

Once each tweet is assigned a cluster, it is still a chal-
lenge to determine how to get interpretable and presentable
cluster names. We follow the approach from [5] and for
each cluster c, concatenate all associated tweets into one

3Sentence-Transformers pretrained models
4An intuitive explanation of UMAP works can be found at umap-

learn.readthedocs.io
5Further discussion of HDBSCAN parameters can be found at hdb-

scan.readthedocs.io

3

https://www.sbert.net/docs/pretrained_models.html
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://hdbscan.readthedocs.io/en/latest/parameter_selection.html
https://hdbscan.readthedocs.io/en/latest/parameter_selection.html

Figure 2: A comparison of the topics over time for LDA (left) versus our method (right).

document. Over this new set of documents, Cg , having size
the number of clusters |C|, we convert the documents into
a matrix of bigram token counts Cg x V where V is the
vocabulary of bigrams. The use of only bigrams here was
critical to giving us coherent topics. We hypothesize this
is a result of the phenomena that many common topics in
AI consist of two words (further analysis in results section).
Also, this process is heavily dependent on the topic counts,
so we apply the same corpus independent transformations
for each tweet as we did for LDA. Using the bigram counts,
we compute TF-IDF scores for each bigram in each docu-
ment as follows:

TFIDF (t) = tf(t, d) ∗ idf(d) (1)

idf(t) = log(|Cg|/df(t)) + 1 (2)

where t is a term ∈ V , d is a document ∈ Cg , tf is a
count of t in d, df is the frequency of t in all documents. The
result is a Cg x V matrix S which has the TF-IDF scores for
each term in each document.

Using the TD-IDF scores for each term within each doc-
ument, the extracted name of each cluster becomes the term
(bigram in our case) with the highest score. To make the
final cluster outputs more human-friendly, we capitalize
the first letter of each token, fully capitalize tokens with 2
or less letters, and for subtopics ignore bigrams that have
the same name as the overall topic (e.g. we found that a
subtopic of “Reinforcement Learning“ might also be “Re-
inforcement Learning“ which is undesirable).

4. Experimental Setup
We start by using the entire processed dataset as input

to LDA and Embed, Cluster, Extract. Both methods have a

large amount of hyperparameters that can dramatically af-
fect the final topics. For example, a key hyperparameter
in LDA is choosing the number of topics. To this end we
ran our model pipeline trying different hyperparameters and
evaluating them using the charts shown in Figure 2. For
LDA to extract the topic text, we take top 3 n-grams with
the highest probability. Generally more than 3 words would
lead to topics that are too long and include many common or
extraneous words. For our method we use the methodology
described in the previous section. The most critical hyper-
parameters to select were HDBSCAN’s minimum cluster
size, minimum samples, and cluster selection epsilon. Gen-
erally, we tried to force a relatively small number of topics
because we have the secondary objective of creating a hi-
erarchy of topics by again applying topic modeling to the
original topics. We settled on minimum cluster size of 200,
minimum samples of 150, and a cluster selection epsilon of
0. We found these parameters achieved the best balance of
creating large enough high level topics to have enough sam-
ples to preform topic modeling again on the subset of data
corresponding to each topic cluster. As a note, we chose
to use this hierarchical structure rather than setting the pa-
rameters to create many topics from the beginning in order
to achieve better interpretability for an end user (i.e. view-
ing 100 topics at once would be overwhelming, doing it this
ways gives us a more interpretable hierarchy). A discussion
of setting these hyperparameters for subtopics can be found
in Appendix A.1.

Both methods are first applied on the entire tweet
dataset, then re-applied to each topic to get the hierarchy
of subtopics. After applying the topic modeling method on
the dataset, we have a mapping from tweets to their topic
and subtopic. To create the area charts, we aggregate the
number of tweets belonging to a particular topic by week.
Each line in the figure corresponds to the 7 week rolling av-

4

Figure 3: A comparison between subtopics generated for a
reinforcement learning topic over time for LDA (top) and
our method (bottom).

erage of tweet counts for that topic in order to smooth the
plots. The data is normalized for the total volume of tweets
for each time period. An example of how to intrepet the
chart is as follows: Looking at the chart on the right in Fig-
ure 2, the area corresponding to “Deep Learning“ can be
interpreted as about one third of all tweets during any time
period shown are related to this topic.

5. Results

Quantitatively evaluating the success of this project is
difficult due to its unsupervised nature. Previous works like
[8] and [21] use crowdsourcing for human evaluation or
are able to compute metrics like precision due to the semi-
supervised nature of their evaluation datasets. Neither of
these are feasible for this project, so we focus on qualita-
tive analysis leveraging our own domain knowledge of the
problem.

Based on our experience with this dataset, we have top-
ics in mind that we would like the model to generate (e.g.
natural language processing, datasets, tutorials, and rein-
forcement learning). Furthermore, an example for expected
subtopics within reinforcement learning might be; “multi-
agent”, “human in the loop”, “environments”, and “offline
RL”. Given our knowledge of the dataset, the topics gen-
erated by LDA in Figure 2 are not exactly what we want.
We see some good topics such as “... Open Source”, “RL
Agent Robot”, and “Language Model Pre”. However many
topics are not cohesive and specific enough to be consid-
ered as subfields within AI. For example, there are many
generic topics such as “AI Research Team” or “Neural AL
ET”. Many topics generated are around the type of con-
tent that the tweet contains like “talk”, “papers”, or “posts”
rather than the actual topics of those tweets. Additionally
some topics like “Bias Model Level” contain extraneous
words which also makes it more difficult to determine a
consistent number of top words to use for the topic’s text.
The relative trend of each topic seems to be quite similar
over time, which is not what we would want because it
makes it hard to discern trends. In the same figure, the chart
on the right is our method and exhibits trends and topics
that are more in line with our expectations for an optimal
system. For example, the clear largest four topics are (in
descending order): “Deep Learning”, “Language Model”,
“Machine Learning”, and “Reinforcement Learning” which
correspond to our domain knowledge that these are some
of the largest and topics in AI (although machine learning
is a too generic of a topic and we would prefer not to see
it). Similarly, the clear smallest topics are ones like “Graph
Neural [Networks]” and “Speech Recognition”, which are
still important and large topics, but definitely not as com-
mon as the top four. Figure 3 shows a comparison between
reinforcement learning related subtopics for each method.
The results are similar to the primary topics. The LDA
method generated fairly good topics, but still suffers from a
lack of cohesiveness and a distinction between the amount
of tweets in each category. We hypothesize that this is a
result of LDA not having to freedom to assign samples to
a noise category and being forced to generate n number of
topics. HDBSCAN has the freedom to not assign samples to
any category and create a new topic if there are enough. We
see the power of this in the reinforcement learning trends as
it came up with 21 subtopics, with most being very relevant
(perhaps with the exception of “Information Game”). Addi-
tionally, we see the trends over time being fairly informative
about the relative importance of each topic.

Table 1 shows all the full tweet texts for two subtopics,
Starcraft II and Video Completion, during the month of
September 2020. We chose the Starcraft II subcategory be-
cause it shows the power of the sentence transformer em-
beddings, but also highlights the weakness of our topic

5

Tweet Full Text Topic / Subtopic
Don’t miss today’s panel discussion with Vladimir Kramnik, @DanielRensch and @Deepmind
researchers on #AlphaZero and the new chess variants, in 3.5 hours from now!

Reinforcement Learning /
Starcraft II

Our first tweet and our first blog! Live debugging production @golang applications using eBPF.
Our CEO/Co-founder @zainasgar shares how to use gobpf and uprobes to build a function
argument tracer for Go:

Reinforcement Learning /
Starcraft II

In a bid to explore new frontiers in chess, our researchers worked with Vladimir Kramnik to
use AlphaZero to test nine new variants of chess. The result? A more creative and collaborative
relationship between chess players and machines.

Reinforcement Learning /
Starcraft II

Section 4.1 of “A Machine Learning Perspective on Predictive Coding with PAQ” discusses old
streaming language models to play games by opponent move prediction. It would be nice to see
apps like this one using the latest neural models.

Reinforcement Learning /
Starcraft II

Impressive work. Motion capture of my dreams https://t.co/mzj7ibTcs0
Texture Synthesis / Video
Completion

Make people “disappear” with Flow-edge Guided Video Completion
Texture Synthesis / Video
Completion

Super excited to share our work on video completion at #ECCV2020! Our method seamlessly
removes objects, watermarks, or expands field-of-view from casually captured videos. Paper:

Texture Synthesis / Video
Completion

Table 1: Full text of tweets from two different subtopics found using our method during the time period September 1, 2020
to October 1, 2020.

name selection method. None of the tweets are actually
about Starcraft II, but they each discuss games under the
context of reinforcement learning which tells us that orig-
inal embeddings for these tweets must have been close
to other tweets that mentioned Starcraft II. However, this
raises the concern that Starcraft II is not a great title for this
subtopic and likely was only chosen by our TF-IDF based
method simply because it was the bigram that occurred most
frequently. We also chose to highlight the “Video Com-
pletion” subtopic because of its quality in that each tweet
is directly related to the subtopic and the subtopic is re-
lated to the topic of “Texture Synthesis”. Examples like this
showcase the power of our system to discover interesting
subtopics and then get further information about the topic
via the corresponding tweets.

6. Limitations and Future Work

Here we discuss the limitations and challenges of our
method while also providing some ideas for future improve-
ment. One major difficulty arises in tuning the hyperparam-
eters of HDBSCAN. We found it very common to be in a
case where we either have too many topics (30+) or too little
(2-3). This phenonoma of too little topics can be seen in the
Appendix Figures 4, 9, and 10. Finding a set of values for
minimum cluster size, minimum samples, and cluster selec-
tion epsilon that generates a satisfying amount of topics for
every subtopic is near impossible and seems like it would
require manual tuning for each case. This poses an issue
for deployment in a real world scenario where new sam-
ples come in constantly and the distribution of topics would
change over time. An adhoc approach to this would be use

heuristics to tune the hyperparameters automatically. For
example, if we have too few topics we could gradually de-
crease the minimum cluster size and cluster epsilon until we
have over a set threshold amount of topics. Perhaps a more
robust solution would be to try other clustering algorithms
that maintains some of the flexibility of HDBSCAN, while
also us to select a number of clusters such as Agglomera-
tive Clustering [14] or BIRCH [22]. We could also remove
the need for a clustering algorithm altogether by using an
autoencoder based method.

Another challenge is extracting coherent topic names.
In our work we effectively leverage a hack where we use
the phenomenon that bigrams in our dataset often make for
great topic names. However, by using bigrams we are as-
suredly creating suboptimal names by missing out on other
combinations of n-grams. The embedding based method
from Top2Vec [1] where they use the topic centroid vec-
tor from HDBSCAN to find the most similar word vector
may be worthwhile to try. However, it will likely still have
the issue of coherence as there still is no relationship be-
tween the word vectors. A better approach might be to ex-
plore text generation or summarization models like GPT-2
[16] or BART [10], additionally pre-trained on our Twitter
dataset, to generate text given an input embedding with the
hopes that the generated text would could provide a short
summary of the topic.

Our document embeddings sit at the bottom of the stack
which makes it difficult to understand its downstream im-
pact on the rest of system. A worthwhile test would be to try
a lower resource embedding like GloVe or a sentence trans-
former with fewer parameters. If our topic quality degrades,
we could hypothesize that the embeddings are in fact signif-

6

icant, so therefore a more custom method or larger model to
create embeddings may lead to better results. In this case we
could try newer sentence transformers like Phrase-BERT or
try continuing pre-training our MPNet based model with
our Twitter dataset.

7. Conclusion
In this project we created a topic modeling based system

to help achieve our goal of distilling the breath of AI knowl-
edge that is shared on Twitter. We explored language model
Transformer methods of embedding sentences, algorithms
for dimensionality reduction, algorithms for clustering, and
algorithms for extracting topics. We showed qualitatively
that the Embed, Cluster, Extract paradigm generates top-
ics that are noticeably more coherent than those produced
by LDA. Additionally, we showed that the our method is
much better at producing trends over time than LDA. In
future work we will look towards solving some of the is-
sues discussed that make it difficult to deploy this system
at scale (namely around the manual tuning that is currently
required).

References
[1] Dimo Angelov. Top2vec: Distributed representations of top-

ics. arXiv preprint arXiv:2008.09470, 2020. 2, 6
[2] David M Blei, Andrew Y Ng, and Michael I Jordan. La-

tent dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003. 2, 3

[3] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander.
Density-based clustering based on hierarchical density esti-
mates. In Pacific-Asia conference on knowledge discovery
and data mining, pages 160–172. Springer, 2013. 2

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2, 3

[5] Maarten Grootendorst. Bertopic: Leveraging bert and c-tf-
idf to create easily interpretable topics., 2020. 1, 2, 3

[6] Matthew Hoffman, Francis Bach, and David Blei. Online
learning for latent dirichlet allocation. advances in neural
information processing systems, 23:856–864, 2010. 3

[7] M Honnibal, I Montani, and S Van Landeghem. Boyd. A.
spaCy: industrial-strength natural language processing in
Python, 10, 2020. 3

[8] Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan
Boyd-Graber, and Hal Daumé III. Feuding families and for-
mer friends: Unsupervised learning for dynamic fictional re-
lationships. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages
1534–1544, 2016. 3, 5

[9] Quoc Le and Tomas Mikolov. Distributed representations
of sentences and documents. In International conference on
machine learning, pages 1188–1196. PMLR, 2014. 2

[10] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and
Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461, 2019. 6

[11] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 2

[12] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hi-
erarchical density based clustering. Journal of Open Source
Software, 2(11):205, 2017. 3

[13] Leland McInnes, John Healy, and James Melville. Umap:
Uniform manifold approximation and projection for dimen-
sion reduction. arXiv preprint arXiv:1802.03426, 2018. 2,
3

[14] Daniel Müllner. Modern hierarchical, agglomerative cluster-
ing algorithms. arXiv preprint arXiv:1109.2378, 2011. 6

[15] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014. 2

[16] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 6

[17] Juan Ramos et al. Using tf-idf to determine word relevance
in document queries. In Proceedings of the first instructional
conference on machine learning, volume 242, pages 29–48.
Citeseer, 2003. 3

[18] Radim Řehůřek and Petr Sojka. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works, pages 45–50, Valletta, Malta, May 2010. ELRA. 3

[19] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguis-
tics, 11 2019. 2, 3

[20] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. Mpnet: Masked and permuted pre-training for language
understanding. arXiv preprint arXiv:2004.09297, 2020. 3

[21] Shufan Wang, Laure Thompson, and Mohit Iyyer. Phrase-
bert: Improved phrase embeddings from bert with
an application to corpus exploration. arXiv preprint
arXiv:2109.06304, 2021. 3, 5

[22] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch:
an efficient data clustering method for very large databases.
ACM sigmod record, 25(2):103–114, 1996. 6

A. Appendix
A.1. All Discovered Subtopics

Figures 4 - 10 show the subtopic trends for the remain-
ing 14 subtopics that were generated by our topic model
shown in Figure 2. Note that the same hyperparameters

7

were applied for each subtopic. For HDBSCAN we used
a minimum cluster size of 25, minimum samples of 2, and a
cluster selection epsilon of 0.24. Certain subtopics such as
“Causal Inference” or “Self Supervise” that were small have
very few subtopics which tells us that the cluster selection
epsilon was set to high and many clusters were merged, or
the minimum cluster size was set too high and few clusters
could be generated. Setting the hyperparameters in this way
was a tradeoff for large topics such as “Language Model”
which tended to have very large amounts of clusters with-
out a high cluster selection epsilon.

8

Figure 4

Figure 5

Figure 6

9

Figure 7

Figure 8

Figure 9

10

Figure 10

11

